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Introduction
Time Series: CO2

A typical example to show the correlations between the observations:

Figure: CO2 rate as a function of time.
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From Time Series to Linear Regression Model

Yt = trend+ seasonality︸ ︷︷ ︸
deterministic

+ errors︸ ︷︷ ︸
random

.

Then:
Y = Xβ + ε,

with:

X =


1 12 13 cos( 2π

3 ) sin( 2π
3 ) . . . cos( 2π

12 ) sin( 2π
12 )

...
...

...
...

...
...

...
...

t t2 t3 cos( 2πt
3 ) sin( 2πt

3 ) . . . cos( 2πt
12 ) sin( 2πt

12 )
...

...
...

...
...

...
...

...
n n2 n3 cos( 2πn

3 ) sin( 2πn
3 ) . . . cos( 2πn

12 ) sin( 2πn
12 )



Emmanuel Caron The regression models with dependent errors 4 / 52



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

ACF of the residuals

β̂ = (XtX)−1XtY : Least Squares Estimators, ε̂ = Y − Ŷ : residuals.

Figure: Autocorrelation of the residuals.

This is important for the applications to consider the dependency of the
error process.

Emmanuel Caron The regression models with dependent errors 5 / 52



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

Goals

1 Investigate the linear regression model in the case where the errors
are dependent

2 Modification of the usual results (confidence intervals, tests, . . . ).
Focus on the “Fisher’s test” and its calibration

3 Study the non-parametric regression model in the case where the
errors are Gaussian and dependent, via a model selection approach.
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Summary

1 Some definitions

2 Presentation of Hannan’s Theorem (1973) [10]: convergence of the
LSE in the stationary case under very mild conditions

3 Estimation of the asymptotic covariance matrix

4 Application: modification and calibration of the “Fisher’s tests”

5 Gaussian non-parametric regression.
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Some definitions
Linear model

Let us consider the regression linear model:

Y = Xβ + ε,

where:

• X is a random or deterministic design, matrix of size [n× p]
• Y is a n random vector of observations

• β is the p vector of unknown parameters

• ε are the errors and ε ∈ Rn. In the following, the error process is
independent of the design X.
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Least Squares Estimators

Let us recall the definition of the Least Squares Estimators (LSE):

β̂ = argminβ∈Rp ‖Y −Xβ‖22 = (XtX)−1XtY,

(‖.‖2= euclidean norm).

We have:

• Ŷ = Xβ̂: Orthogonal Projection of Y on
MX = V ect{X.,1, . . . , X.,p}

• Residual vector: ε̂ = Y − Ŷ = Y −Xβ̂ ∈M⊥X
• σ̂2 =

‖ε̂‖22
n−p .
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Strict Stationarity

Let (Ω,F ,P) be a probability space.
The error process (εi)i∈Z is defined on (Ω,F ,P), supposed strictly
stationary with zero mean, and ε0 ∈ L2(Ω).

Definition: Strict Stationarity

A stochastic process (εi)i∈Z is said to be strictly stationary if the joint
distributions of (εt1 , . . . , εtk) and (εt1+h, . . . , εtk+h) are the same for all
positive integers k and for all t1, . . . , tk, h ∈ Z.

Let (Fi)i∈Z be a non-decreasing filtration on (Ω,F ,P) defined as follows:
Fi = σ(εk, k ≤ i).
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Spectral density

Let us define the autocovariance function of the error process:

γ(k) = Cov(εm, εm+k) = E(εmεm+k),

and we denote by Γn the toeplitz covariance matrix:
Γn = [γ(j − l)]1≤j,l≤n.

Let f be the associated spectral density, that is the positive function on
[−π, π] such that:

γ(k) =

∫ π

−π
eikλf(λ)dλ.
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Hannan’s theorem
Condition on the error process

In the following, we work conditionally at design X. Given X, Hannan
(1973) [10] has proved a Central Limit Theorem in the stationary case for

the usual LSE β̂ under very mild conditions.

Let (Pj)j∈Z be a family of projection operators: ∀j ∈ Z and
∀Z ∈ L2(Ω): Pj(Z) = E(Z|Fj)− E(Z|Fj−1).

Hannan’s condition on the error process:∑
i≥0

‖P0(εi)‖L2 < +∞.

This implies the short memory:
∑
k |γ(k)| < +∞.

Hannan’s condition is satisfied for most of short-range dependent
processes. (Linear Processes, Functions of linear processes (Dedecker,
Merlevède, Volný (2007) [7]), Weakly dependent sequences (Dedecker
and Prieur (2005) [8], Caron and Dede (2018) [5]), . . . ).
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Hannan’s conditions on the design

Let X.,j be the column j of the matrix X, j ∈ {1, . . . , p}, and dj(n) the

euclidean norm of X.,j : dj(n) = ‖X.,j‖2 =
√∑n

i=1 x
2
i,j .

Let D(n) be the diagonal normalization matrix with diagonal term dj(n).

Conditions on the design:

• ∀j ∈ {1, . . . , p}, limn→∞ dj(n) =∞ a.s.

• ∀j ∈ {1, . . . , p}, limn→∞
sup1≤i≤n|xi,j |

dj(n)
= 0 a.s.,

and the following limits exist, ∀j, l ∈ {1, . . . , p}, k ∈ {0, . . . , n− 1}:

• ρj,l(k) = limn→∞
∑n−k
m=1

xm,jxm+k,l

dj(n)dl(n)
a.s.
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Hannan’s theorem

Theorem (Hannan (1973) [10])

Under the previous conditions, for all bounded continuous function f :

E
(
f
(
D(n)(β̂ − β)

) ∣∣∣X) a.s.−−−−→
n→∞

E
(
f(Z)

∣∣∣X) ,
where the distribution of Z given X is: N (0, C). Furthermore we have
the convergence of second order moment:

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) a.s.−−−−→
n→∞

C.

Remark

Let us notice that, by the dominated convergence theorem, we have for
any bounded continuous function f:

E
(
f
(
D(n)(β̂ − β)

))
−−−−→
n→∞

E (f(Z)) .

Emmanuel Caron The regression models with dependent errors 16 / 52



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

1 Introduction

2 Some definitions

3 Hannan’s theorem

4 Estimation of the covariance matrix

5 Tests

6 Gaussian non-parametric regression

Emmanuel Caron The regression models with dependent errors 17 / 52



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

Estimation of the covariance matrix

To obtain confidence regions or test procedures, one needs to estimate
the limiting covariance matrix C. By Hannan, we have:

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) a.s.−−−−→
n→∞

C,

and:

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) = D(n)(XtX)−1XtΓnX(XtX)−1D(n),

with Γn = [γ(j − l)]1≤j,l≤n (covariance matrix of the error process).

Consequently, we only need an estimator of Γn.
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Residual-based Kernel estimator

Let us consider the following estimator of Γn:

Γ̂∗n,hn
=

[
K

(
j − l
hn

)
γ̂∗j−l

]
1≤j,l≤n

,

with2 : γ̂∗k = 1
n

∑n−|k|
j=1 ε̂j ε̂j+|k|, 0 ≤ |k| ≤ (n− 1).

The function K is a kernel such that:

• K is nonnegative, symmetric, and K(0) = 1

• K has compact support

• the fourier transform of K is integrable.

The sequence of positive reals hn is such that hn →∞ and hn

n → 0 as
n→∞.

2In our context, (εi)i∈{1,...,n} is not observed. Only the residuals ε̂i = Yi − (xi)
tβ̂

are available, because only the data Y and the design X are observed.
Emmanuel Caron The regression models with dependent errors 19 / 52
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Covariance matrix estimator

To estimate the asymptotic covariance matrix C, we use the estimator:

Cn = D(n)(XtX)−1XtΓ̂∗n,hn
X(XtX)−1D(n).

The coefficients of the matrices Cn and C are respectively denoted by
cn,(j,l) and cj,l , for all j, l in {1, ..., p}.

Emmanuel Caron The regression models with dependent errors 20 / 52



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

Consistency

The following theorem proves, under mild conditions, the L1-norm
consistency given X of the covariance matrix estimator:

Theorem (C. (2019) [4])

Let hn be a sequence of positive reals such that hn →∞ as n→∞, and:

hnE
(
|ε0|2

(
1 ∧ hn

n
|ε0|2

))
−−−−→
n→∞

0.

Then, under the assumptions of Hannan’s Theorem, the estimator Cn is
consistent, that is for all j, l in {1, ..., p}:

E
(∣∣cn,(j,l) − cj,l∣∣ ∣∣∣X) −−−−→

n→∞
0.
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hn condition

Corollary

Under the same conditions, the estimator Cn converges in probability to
C as n tends to infinity.

The condition:

hnE
(
|ε0|2

(
1 ∧ hn

n
|ε0|2

))
−−−−→
n→∞

0. (1)

is a very general condition.

Remark

If ε0 ∈ L2, then there exists hn →∞ such that (1) holds.
In particular, if ε0 has a fourth order moment, then the condition is
verified if hn√

n
→ 0.
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Sketch of the proof

Let V (X) be the matrix E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X), and let vj,l

be its coefficients. By the triangle inequality, ∀j, l ∈ {1, . . . , p}:∣∣cn,(j,l) − cj,l∣∣ ≤ |vj,l − cj,l|+ ∣∣cn,(j,l) − vj,l∣∣ .
Thanks to Hannan’s Theorem:

lim
n→∞

E
(
|vj,l − cj,l|

∣∣∣X) = 0, a.s.

Then it remains to prove that:

lim
n→∞

E
(∣∣cn,(j,l) − vj,l∣∣ ∣∣∣X) = 0, a.s.

We have:

V (X) = D(n)(XtX)−1XtΓnX(XtX)−1D(n)

Cn = D(n)(XtX)−1XtΓ̂∗n,hn
X(XtX)−1D(n).
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Thanks to the convergence of Dn(XtX)−1Dn (Hannan’s conditions), it
is sufficient to consider the matrices:

V ′ = D−1n XtΓnXD
−1
n , C ′n = D−1n XtΓ̂∗n,hn

XD−1n .

We know that Γn =
∑n−1
k=−n+1 γ(k)J

(k)
n , where J

(k)
n is a matrix with

some 1 on the k-th diagonal. Thus we have:

D(n)−1XtΓnXD(n)−1 =

n−1∑
k=−n+1

γ(k)Bk,n

D(n)−1XtΓ̂∗n,hn
XD(n)−1 =

n−1∑
k=−n+1

K

(
k

hn

)
γ̂∗kBk,n,

with Bk,n = D(n)−1XtJ
(k)
n XD(n)−1.
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∣∣∣c′n,(j,l) − v′j,l∣∣∣ =

∣∣∣∣∣
n−1∑

k=−n+1

(
K

(
k

hn

)
γ̂∗k − γ(k)

)
bk,nj,l

∣∣∣∣∣ ,
where bk,nj,l is the coefficient (j, l) of the Bk,n matrix.

We recall that:

f(λ) =
1

2π

∞∑
k=−∞

γ(k)eikλ, γ(k) =

∫ π

−π
eikλf(λ)dλ,

and:

f∗n(λ) =
1

2π

n−1∑
k=−n+1

K

(
|k|
hn

)
γ̂∗ke

ikλ, K

(
|k|
hn

)
γ̂∗k =

∫ π

−π
eikλf∗n(λ)dλ.
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Then:

n−1∑
k=−n+1

(
K

(
k

hn

)
γ̂∗k − γ(k)

)
Bk,n =

∫ π

−π
(f∗n(λ)− f(λ)) gn(λ)(dλ),

with:

gn(λ) =
1

2π

n−1∑
k=−(n−1)

eikλBk,n,

in such a way that the matrices Bk,n are the Fourier coefficients of the
function gn(λ):

Bk,n =

∫ π

−π
eikλgn(λ)dλ.

Thus it remains to prove that, for all j, l in {1, . . . , p}:

lim
n→∞

E
(∣∣∣∣∫ π

−π
(f∗n(λ)− f(λ)) [gn(λ)]j,ldλ

∣∣∣∣ ∣∣∣X) = 0, a.s.
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We have:

E
(∣∣∣∣∫ π

−π
(f∗n(λ)− f(λ)) [gn(λ)]j,ldλ

∣∣∣∣ ∣∣∣X)
≤ sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X)∫ π

−π
|[gn(λ)]j,l| dλ,

because [gn(λ)]j,l is measurable with respect to the σ-algebra generated
by the design X.
Then, we can prove that:∫ π

−π
|[gn(λ)]j,l| dλ ≤ 1.

Consequently:

sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X)∫ π

−π
|[gn(λ)]j,l| dλ

≤ sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X) .
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Proof: Spectral density estimate

Let us consider the following estimator of the spectral density, for

λ ∈ [−π, π]: f∗n(λ) = 1
2π

∑
|k|≤n−1K

(
|k|
hn

)
γ̂∗ke

ikλ, where:

γ̂∗k = 1
n

∑n−|k|
j=1 ε̂j ε̂j+|k|, 0 ≤ |k| ≤ (n− 1).

Theorem (C. and Dede (2018) [5])

Under the same assumptions of the consistency Theorem:

sup
λ∈[−π,π]

‖f∗n(λ)− f(λ)‖L1 −−−−→
n→∞

0.

This theorem has been proved for a fixed design X, but it remains true
with a random design:

lim
n→∞

sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X) = 0, a.s.

The proof is complete.
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Corollary (Hannan’s theorem + Consistency theorem)

Corollary

Under the assumptions of Hannan’s Theorem and the consistency
theorem (Consistency of Cn), we get:

C
− 1

2
n

(
D(n)(β̂ − β)

)
L−−−−→

n→∞
N (0, Ip),

where Ip is the p× p identity matrix.

Consequently, we can obtain confidence regions and tests for β in this
dependent context.
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Tests

• We are interested in test procedures on the linear model, particularly
the “Fisher’s” tests

• Thanks to the previous corollary, we can establish a new test
statistic, so that the tests on the linear model always have an
asymptotically good level, even when the underlying error process is
dependent

• The level of a test (denoted by α) is the probabilty to choose H1

hypothesis while H0 is true.
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“Fisher’s” test: Dependent case

H0 : βj1 = . . . = βjp0 = 0, against H1 : ∃jz ∈ {j1, . . . , jp0} such that
βjz 6= 0. If the error process is strictly stationary, we have:

C−1/2np0

 dj1(n)(β̂j1 − βj1)
...

djp0 (n)(β̂jp0 − βjp0 )

 L−−−−→
n→∞

N (0p0×1, Ip0).

Then under H0-hypothesis:Z1,n

...
Zp0,n

 = C−1/2np0

 dj1(n)β̂j1
...

djp0 (n)β̂jp0

 L−−−−→
n→∞

N (0p0×1, Ip0),

and we define the following test statistic: Ξ = Z2
1,n + · · ·+ Z2

p0,n. Under

the H0-hypothesis, Ξ
L−−−−→

n→∞
χ2
p0 .

In the same way, we can define an univariate test.
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Bandwidth calibration

We have defined test procedures with a level asymptotically equal to α
(α to be determined, typically 5%).

Question: With a finite value of observations, how to choose the
bandwidth hn in order to have well-calibrated tests and a non-asymptotic
level as close as possible to the wanted level α ?

Two main difficulties in our context:

1 Our target is the level of a test, which differs from classical
approaches where the risk of an estimator is considered

2 We are not only in a context of dependent variables, but also in the
very general framework of Hannan whose theorem applies for most
stationary short-memory processes.

Consequently we can not use directly the classical methods of adaptive
statistics in our framework.
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Figure: Level curve: estimated level as a function of the lag; n = 1000
observations, T = 100 simulations.
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Empirical methods

• It is of first importance to provide hypothesis tests with correct
significance levels

• We need data driven methods for the applications

• We partially answered to this problem by constructing empirical
methods based on the data

• We propose a ”plug-in” approach which consists in replacing the
estimator of Γn. So we introduce the following estimator:

Ĉ = Ĉ(Γ̂n) := D(n)(XtX)−1XtΓ̂nX(XtX)−1D(n),

and we use Ĉ to compute the usual statistics of the linear model.
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We have defined different ways to obtain the Γ̂n matrix:

1 by adapting an autoregressive process on the residual process and
computing the theoretical covariances of the obtained AR(p)
process. The order of the AR process is chosen by an AIC criterion

2 using the kernel estimator defined in Caron [4] with a bootstrap
method to choose the value of the window (Wu and Pourahmadi
(2009) [12])

3 by using an alternative choice of the window for the rectangular
kernel (Efromovich (1998) [9])

4 in using an adaptive estimator of the spectral density via a
histogram base (Comte (2001) [6]), with the slope heuristic
algorithm to choose the dimension.

All these methods have been programmed on R in the slm package
available on the CRAN.
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Simulations

Let us define the three following processes:
1 AR(1) process (called ”AR1”): εi − 0.7εi−1 = Wi, where
Wi ∼ N (0, 1)

2 MA(12) process (called ”MA12”):
εi = Wi + 0.5Wi−2 + 0.3Wi−3 + 0.2Wi−12,, where the (Wi)’s are
i.i.d. random variables following Student’s distribution with 10
degrees of freedom

3 A dynamical system (called ”Sysdyn”): for γ ∈]0, 1[, the
intermittent map θγ : [0, 1] 7→ [0, 1] introduced by Liverani, Saussol
and Vaienti [11] is defined by

θγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1].

The Sysdyn process is then defined by εi = θiγ (For the simulations,
γ = 1/4). It is a non-mixing process (in the sense of Rosenblatt),
with an arithmetic decay of the correlations (∼ 1

k3 if γ = 1/4).
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• Let us define the following linear regression model, for all i in
{1, . . . , n} (β1 = 3 and Zi is a gaussian AR(1) process):

Yi = β1 + β2(log(i) + sin(i) + Zi) + β3i+ εi

• We simulate a n-error process according to the AR1, the MA12 or
the Sysdyn processes (small samples (n = 200) and larger
(n = 1000, 5000))

• We simulate realizations of the linear regression model under the
null hypothesis: H0 : β2 = β3 = 0

• We make the test like described above

• The simulations are repeated 1000 times.
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n
Process

Method
Fisher
i.i.d.

fitAR spectral
proj

efromo
vich

kernel

200

AR1 process 0.465 0.097 0.14 0.135 0.149

Sysdyn process 0.385 0.105 0.118 0.124 0.162

MA12 process 0.228 0.113 0.113 0.116 0.15

1000

AR1 process 0.418 0.043 0.049 0.049 0.086

Sysdyn process 0.393 0.073 0.077 0.079 0.074

MA12 process 0.209 0.064 0.066 0.069 0.063

5000

AR1 process 0.439 0.044 0.047 0.047 0.047

Sysdyn process 0.381 0.058 0.061 0.057 0.064

MA12 process 0.242 0.044 0.048 0.043 0.057

Table: Estimated levels.
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Gaussian non-parametric regression

• Estimation of a non-random vector f∗ ∈ Rn in the model:

Y = f∗ + ε,

where ε ∼ N (0n×1,Σn×n)

• Study the regression model in the non-parametric case via a model
selection approach

• Develop a model selection theory with penalization in the framework
of Gaussian dependent variables

• Establish an oracle inequality for the minimal risk estimator among a
collection of models.
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Framework

• Estimation of a non-random vector f∗ ∈ Rn in the model:

Y = f∗ + ε,

where ε ∼ N (0n×1,Σn×n)
• Let {Sm,m ∈M} be a collection of finite-dimensional spaces. For

all m ∈M:
- dm = dim(Sm)
- f̂m = Proj⊥Sm

Y : least squares estimator of f∗ on Sm

• f̂m minimizes the contrast function defined ∀t ∈ Sm (‖.‖2:
euclidean norm):

γ(t) = ‖Y − t‖22
• Risk of an estimator f̂m:

R(f̂m) = E
[∥∥∥f̂m − f∗∥∥∥2

2

]
.
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• We want to select the oracle estimator f̂m0 :

m0 ∈ argminm∈M{R(f̂m)}

• Usually, risk = bias2 + variance. Bias and variance have opposite
behaviors according to the dimension

• The goal is to find the dimension that balances bias and variance

• We can not compute the risks directly because only the data are
available. Definition of the empirical risk:

R̂(f̂m) =
1

n

∥∥∥Y − f̂m∥∥∥2
2

• This typically leads to overfitting, then we have to penalize the
larger models

• Thus we want to find f̂m̂ such that:

m̂ ∈ argminm∈M

{∥∥∥Y − f̂m∥∥∥2
2

+ pen(m)

}
,

where pen :M→ R+ is a penalty function.
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Penalty and oracle inequality

• Let π = {πm,m ∈M} be a distribution of probability on M
associated with the collection of models {Sm,m ∈M}, such that∑
m∈M e−πm < +∞

• (λi){1≤i≤n}: eigenvalues of the covariance matrix Σ

• ρ(Σ) its spectral radius ρ(Σ) = max1≤i≤n λi.

According to the penalized criterion, for a constant K > 1 and the
penalty:

pen(m) = Kρ(Σ)

(√
dm +

√
2 log

(
1

πm

))2

,

we have the following theorem:
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Theorem (Oracle inequality)

For the estimator f̂m̂, there exists a constant CK > 1, dependent only on
K > 1, such that:

E
[∥∥∥f̂m̂ − f∗∥∥∥2

2

]
≤ CK min

m∈M

{
E
[∥∥∥f̂m − f∗∥∥∥2

2

]

+ ρ(Σ)

1 +

(√
dm +

√
2 log

(
1

πm

))2
}.

Remark

If the Gaussian process ε is stationary and the spectral density is bounded,
then the spectral radius is bounded and therefore the penalty is the same
as in the i.i.d. case, up to a constant (cf. Birgé and Massart [1], [2]).

σ2 has been replaced by ρ(Σ).
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Slope heuristic

• If the collection of model is not too large, the penalty is:

pen(m) = K ′ρ(Σ)dm

• For the applications, we calibrate the constant K ′ of the penalty
from data

• Given the penalty, it is reasonable to use the slope heuristic method
(Birgé and Massart [1], [2], [3])

• We use here the algorithm of dimension jump. Let m̂(K ′) be the
selected model by the penalized criterion for a choice of K ′:

m̂(K ′) ∈ argminm∈M

{∥∥∥Y − f̂m∥∥∥2
2

+K ′ρ(Σ)dm

}
.
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Simulations

• Let ε be the following ARMA(2,1) gaussian process
(Wi ∼ N (0, 0.5)): εi − 0.4εi−1 − 0.2εi−2 = Wi + 0.3Wi−1

• For all t in [0, 1], f∗ = 3− 0.1t+ 0.5t2 − t3 + sin(8t)

• We generate a sample of size n = 1000, defined for all i in
{1, . . . , n}:

Yi = f∗
(
i

n

)
+ εi

• The goal is to adapt a regressogram and choose the best regular
partition to approach the f∗ function.

For a dimension m, from 1 to 50, we split the interval [0, 1] into m

intervals and the estimator f̂m is a piecewise constant function, equal to
the average of Yi on each interval.
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This simulation is repeated 100 times and we obtain the following mean

risk curve

(∥∥∥f̂m − f∗∥∥∥2
2

)

Figure: Mean risk curve for 100 simulations, and total mean risk of the method
with slope heuristic (red line).
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• Evaluation of the performance of the dimension jump algorithm

• We compute the risk
∥∥∥f̂m − Y ∥∥∥2

2
• Then we use the slope heuristic method to choose the dimension

(again the simulation is repeated 100 times).

Figure: Boxplot with the dimensions selected by the dimension jump algorithm.
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This represents the function f∗ and its estimator with a regressogram of
dimension 10 (dimension with the minimum average theoretical risk).

Figure: Function f∗ (black) and the regressogram with dimension 10 (red).
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Perspectives

• Gaussian non-parametric regression: deepen the obtained results in
the gaussian short memory case. Then find the shape of the penalty
in the gaussian long memory case

• Non-parametric regression: generalize the previous results to the
non-Gaussian case

• Dependent variables in Statistical Learning
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Thank you !
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