Asymptotic distribution of least square estimators for linear models with dependent errors

Emmanuel Caron¹

http://ecaron.perso.math.cnrs.fr

Directeurs de thèse: Jérôme Dedecker (MAP5), Bertrand Michel (LMJL)

18 Septembre 2018

¹Ecole Centrale Nantes, Laboratoire de Mathématiques Jean Leray UMR 6629, 1 Rue de la Noë, 44300 Nantes. **Email: emmanuel.caron@ec-nantes.fr**

Emmanuel Caron

Asymptotic distribution of least square estimators for linear models with dependent errors

3 Estimation of the covariance matrix

Sommaire

2 Hannan's theorem

3 Estimation of the covariance matrix

Tests and Simulations Bibliography

Linear Regression Model

Linear Regression model:

$$Y = X\beta + \epsilon,$$

- X is a design, random or not, size $[n \times p]$
- Y is a n random vector
- β is a p vector of unknown parameters
- ϵ are the errors, $\epsilon \in \mathbb{R}^n$. The error process is independent of the design X.

Usual assumptions:

- the errors are i.i.d.
- $\mathbb{E}(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2 I_n$
- Sometimes, $\epsilon \sim \mathcal{N}(0, \sigma^2 I_n)$

Least Square Estimator

$$\hat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \left\| Y - X\beta \right\|_2^2 = (X^t X)^{-1} X^t Y.$$

- $\hat{Y} = X\hat{\beta}$: Orthogonal Projection of Y on $\mathcal{M}_X = Vect\{X_{.,1}, ..., X_{.,p}\}$
- Residual vector: $\hat{\epsilon} = Y \hat{Y} = Y X\hat{\beta} \in \mathcal{M}_X^{\perp}$

•
$$\hat{\sigma}^2 = \frac{\|\hat{\epsilon}\|_2^2}{n-p}.$$

Distribution of the LSE in the i.i.d. case:

- Gaussian Case: $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^tX)^{-1})$
- Non-Gaussian Case: $D(n)(\hat{\beta} \beta) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, \sigma^2 Q^{-1}).$

Goals and Plan

Main Goal : Remove the independence hypothesis and correct the results on the linear regression model in a very general framework

Plan :

- Hannan's Theorem (1973) [4]: convergence of the LSE in the stationary case under very mild conditions
- Stimation of the covariance matrix
- Applications with Fisher's tests

Stationarity

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. $(\epsilon_i)_{i \in \mathbb{Z}}$ is an error process defined on $(\Omega, \mathcal{F}, \mathbb{P})$, supposed strictly stationary, with zero mean, and $\epsilon_0 \in \mathbb{L}^2$.

Definition : Strict Stationarity

A stochastic process $(\epsilon_i)_{i \in \mathbb{Z}}$ is said to be strictly stationary if the joint distributions of $(\epsilon_{t_1}, \ldots, \epsilon_{t_k})$ and $(\epsilon_{t_1+h}, \ldots, \epsilon_{t_k+h})$ are the same for all positive integers k and for all $t_1, \ldots, t_k, h \in \mathbb{Z}$.

Let $(\mathcal{F}_i)_{i\in\mathbb{Z}}$ be a non-decreasing filtration on $(\Omega, \mathcal{F}, \mathbb{P})$ (Example: $\mathcal{F}_i = \sigma(\epsilon_k, k \leq i)$). We always suppose that $\mathcal{F}_{-\infty} = \bigcap_{i\in\mathbb{Z}} \mathcal{F}_i$ is trivial, and $\epsilon_0 \mathcal{F}_\infty$ -measurable.

Spectral density

Autocovariance function of the error process:

$$\gamma(k) = \operatorname{Cov}(\epsilon_m, \epsilon_{m+k}) = \mathbb{E}(\epsilon_m \epsilon_{m+k}),$$

and the covariance matrix: $\Gamma_n = [\gamma(j-l)]_{1 \le j, l \le n}$. Let f be the associated spectral density, $\lambda \in [-\pi, \pi]$:

$$\gamma(k) = \int_{-\pi}^{\pi} e^{ik\lambda} f(\lambda) d\lambda,$$

$$f(\lambda) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma(k) e^{ik\lambda}.$$

Sommaire

3 Estimation of the covariance matrix

Tests and Simulations Bibliography

Hannan's condition on the error process

Given the design X, Hannan has proved a CLT in the stationary case for the usual LSE $\hat{\beta}$ under very mild conditions.

- $\forall j \in \mathbb{Z} \text{ and } \forall Z \in \mathbb{L}^2(\Omega): P_j(Z) = \mathbb{E}(Z|\mathcal{F}_j) \mathbb{E}(Z|\mathcal{F}_{j-1}).$
- Hannan's condition on the error process:

$$\sum_{i\in\mathbb{Z}} \|P_0(\epsilon_i)\|_{\mathbb{L}^2} < +\infty.$$

This implies: $\sum_k |\gamma(k)| < +\infty$.

Hannan's condition is satisfied for most of short-range dependent processes.

Examples which verify Hannan's condition

- Linear Processes (Dedecker, Merlevède, Vólny (2007) [2])
- Functions of linear processes ([2])
- Conditions à la Gordin ([2])
- Framework of Wu (Wu (2005) [5])
- Weakly dependent sequences (Dedecker-Prieur (2004) [3], Caron-Dede (2017) [1])

Hannan's conditions on the design

• Let $X_{.,j}$ be the column j of the matrix X, $j \in \{1, \ldots, p\}$:

$$d_j(n) = \|X_{.,j}\|_2 = \sqrt{\sum_{i=1}^n x_{i,j}^2},$$

and let D(n) be the diagonal matrix with diagonal term $d_j(n)$. • Conditions on the design:

$$\forall j \in \{1, \dots, p\}, \qquad \lim_{n \to \infty} d_j(n) = \infty \qquad a.s.,$$
$$\forall j \in \{1, \dots, p\}, \qquad \lim_{n \to \infty} \frac{\sup_{1 \le i \le n} |x_{i,j}|}{d_j(n)} = 0 \qquad a.s.,$$

and the following limits exist:

$$\forall j, l \in \{1, \dots, p\}, \qquad \rho_{j,l}(k) = \lim_{n \to \infty} \sum_{m=1}^{n-k} \frac{x_{m,j} x_{m+k,l}}{d_j(n) d_l(n)} \qquad a.s.$$

We define the $p \times p$ matrix R(k):

$$R(k) = [\rho_{j,l}(k)] = \int_{-\pi}^{\pi} e^{ik\lambda} F_X(d\lambda) \qquad a.s.,$$

where F_X is the spectral measure associated with the matrix R(k).

Moreover, we suppose:

$$R(0) > 0 \qquad a.s.$$

Then let F and G be the matrices:

$$F = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_X(d\lambda) \qquad a.s.,$$

$$G = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_X(d\lambda) \otimes f(\lambda) \qquad a.s.$$

Theorem (Hannan (1973) [4])

Under the previous conditions, for all bounded continuous function f:

$$\mathbb{E}\left(f\left(D(n)(\hat{\beta}-\beta)\right)\Big|X\right)\xrightarrow[n\to\infty]{a.s.}\mathbb{E}\left(f(Z)\Big|X\right),$$

where the distribution of Z given X is: $\mathcal{N}(0, F^{-1}GF^{-1})$. Furthermore we have the convergence of second order moment:

$$\mathbb{E}\left(D(n)(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{t}D(n)^{t}\Big|X\right)\xrightarrow[n\to\infty]{a.s.}F^{-1}GF^{-1}$$

Remark

Let us notice that, by the dominated convergence theorem, we have for any bounded continuous function f:

$$\mathbb{E}\left(f\left(D(n)(\hat{\beta}-\beta)\right)\right)\xrightarrow[n\to\infty]{}\mathbb{E}\left(f(Z)\right),$$

Sommaire

2 Hannan's theorem

3 Estimation of the covariance matrix

Tests and Simulations Bibliography To obtain confidence regions or test procedures, one needs to estimate the limiting covariance matrix $F^{-1}GF^{-1}$. By Hannan, we have:

$$\mathbb{E}\left(D(n)(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{t}D(n)^{t}\middle|X\right)\xrightarrow[n\to\infty]{a.s.}F^{-1}GF^{-1}.$$

and:

$$\mathbb{E}\left(D(n)(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{t}D(n)^{t}\middle|X\right) = D(n)(X^{t}X)^{-1}X^{t}\Gamma_{n}X(X^{t}X)^{-1}D(n),$$

with $\Gamma_n = [\gamma(j-l)]_{1 \le j, l \le n}$ (covariance matrix of the error process). Then we need an estimator of Γ_n .

Let us first consider a preliminary random matrix:

$$\widehat{\Gamma}_{n,h_n} = \left[K\left(\frac{j-l}{h_n}\right) \widehat{\gamma}_{j-l} \right]_{1 \le j,l \le n}$$

with:

$$\hat{\gamma}_k = \frac{1}{n} \sum_{j=1}^{n-|k|} \epsilon_j \epsilon_{j+|k|}, \qquad 0 \le |k| \le (n-1).$$

The function K is a kernel such that:

- K is nonnegative, symmetric, and K(0) = 1
- K has compact support
- the fourier transform of K is integrable.

The sequence of positive reals h_n is such that $h_n \xrightarrow[n \to \infty]{} \infty$ and $\frac{h_n}{n} \xrightarrow[n \to \infty]{} 0.$

In our context, $(\epsilon_i)_{i\in\{1,\ldots,n\}}$ is not observed. Only the residuals are available:

$$\hat{\epsilon}_i = Y_i - (x_i)^t \hat{\beta} = Y_i - \sum_{j=1}^p x_{i,j} \hat{\beta}_j,$$

because only the data Y and the design X are observed. Consequently, we consider the following estimator of Γ_n :

$$\widehat{\Gamma}_{n,h_n}^* = \left[K\left(\frac{j-l}{h_n}\right) \widehat{\gamma}_{j-l}^* \right]_{1 \leq j,l \leq n}$$

where:

$$\hat{\gamma}_k^* = \frac{1}{n} \sum_{j=1}^{n-|k|} \hat{\epsilon}_j \hat{\epsilon}_{j+|k|}, \qquad 0 \le |k| \le (n-1).$$

To estimate the asymptotic covariance matrix $F^{-1}GF^{-1}$, we use the estimator:

$$C_n = D(n)(X^t X)^{-1} X^t \widehat{\Gamma}_{n,h_n}^* X(X^t X)^{-1} D(n).$$

Let us denote by C the matrix $F^{-1}GF^{-1}$ and the coefficients of the matrices C_n and C are respectively denoted by $c_{n,(j,l)}$ and $c_{j,l}$, for all j, l in 1, ..., p.

Consistence

Theorem (C. (2018), submitted)

Let h_n be a sequence of positive reals such that $h_n \to \infty$ as n tends to infinity, and:

$$h_n \mathbb{E}\left(\left|\epsilon_0\right|^2 \left(1 \wedge \frac{h_n}{n} \left|\epsilon_0\right|^2\right)\right) \xrightarrow[n \to \infty]{} 0.$$

Then, under the assumptions of Hannan's Theorem, the estimator C_n is consistent, that is for all j, l in 1, ..., p:

$$\mathbb{E}\left(\left|c_{n,(j,l)}-c_{j,l}\right|\left|X\right)\xrightarrow[n\to\infty]{}0$$

Corollary

Under the same conditions, the estimator C_n converges in probability to C as n tends to infinity.

Sketch of the proof

Let V(X) be the matrix $\mathbb{E}\left(D(n)(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{t}D(n)^{t}|X\right)$, and let $v_{j,l}$ be its coefficients. By the triangle inequality, $\forall j, l \in \{1, \dots, p\}$:

$$|c_{n,(j,l)} - c_{j,l}| \le |v_{j,l} - c_{j,l}| + |c_{n,(j,l)} - v_{j,l}|.$$

Thanks to Hannan's Theorem:

$$\lim_{n \to \infty} \mathbb{E}\left(\left| v_{j,l} - c_{j,l} \right| \, \middle| X \right) = 0, \quad a.s.$$

Then it remains to prove that:

$$\lim_{n \to \infty} \mathbb{E}\left(\left| c_{n,(j,l)} - v_{j,l} \right| \left| X \right) = 0, \quad a.s.$$

Thanks to the convergence of $D_n(X^tX)^{-1}D_n$ to $R(0)^{-1}$, it is sufficient to consider the matrices:

$$V' = D_n^{-1} X^t \Gamma_n X D_n^{-1}, \qquad C'_n = D_n^{-1} X^t \widehat{\Gamma}_{n,h_n}^* X D_n^{-1}.$$

We know that $\Gamma_n = \sum_{k=-n+1}^{n-1} \gamma(k) J_n^{(k)}$. Thus we have:

$$D(n)^{-1}X^{t}\Gamma_{n}XD(n)^{-1} = \sum_{k=-n+1}^{n-1}\gamma(k)B_{k,n}$$

$$D(n)^{-1} X^t \widehat{\Gamma}_{n,h_n}^* X D(n)^{-1} = \sum_{k=-n+1}^{n-1} K\left(\frac{k}{h_n}\right) \widehat{\gamma}_k^* B_{k,n}$$

with $B_{k,n} = D(n)^{-1} X^t J_n^{(k)} X D(n)^{-1}$.

$$\left|c_{n,(j,l)}'-v_{j,l}'\right| = \left|\sum_{k=-n+1}^{n-1} \left(K\left(\frac{k}{h_n}\right)\hat{\gamma}_k^*-\gamma(k)\right)b_{j,l}^{k,n}\right|$$

where $b_{j,l}^{k,n}$ is the coefficient (j,l) of the $B_{k,n}$ matrix.

Then:

$$\sum_{k=-n+1}^{n-1} \left(K\left(\frac{k}{h_n}\right) \hat{\gamma}_k^* - \gamma(k) \right) B_{k,n} = \int_{-\pi}^{\pi} \left(f_n^*(\lambda) - f(\lambda) \right) g_n(\lambda)(d\lambda)$$

with:

$$g_n(\lambda) = \frac{1}{2\pi} \sum_{k=-(n-1)}^{n-1} e^{ikx} B_{k,n}.$$

in such a way that the matrices $B_{k,n}$ are the Fourier coefficients of the function $g_n(\lambda)$:

$$B_{k,n} = \int_{-\pi}^{\pi} e^{ik\lambda} g_n(\lambda) d\lambda.$$

We have:

$$\mathbb{E}\left(\left|\int_{-\pi}^{\pi} \left(f_{n}^{*}(\lambda) - f(\lambda)\right) \left[g_{n}(\lambda)\right]_{j,l} d\lambda\right| \left|X\right)\right.$$
$$\leq \sup_{\lambda \in [-\pi,\pi]} \mathbb{E}\left(\left|f_{n}^{*}(\lambda) - f(\lambda)\right| \left|X\right) \int_{-\pi}^{\pi} \left|\left[g_{n}(\lambda)\right]_{j,l}\right| d\lambda$$

Proof: Spectral density estimate

And:

$$\sup_{\lambda \in [-\pi,\pi]} \mathbb{E}\left(\left|f_n^*(\lambda) - f(\lambda)\right| \left|X\right) \int_{-\pi}^{\pi} \left|[g_n(\lambda)]_{j,l}\right| d\lambda$$
$$\leq \sup_{\lambda \in [-\pi,\pi]} \mathbb{E}\left(\left|f_n^*(\lambda) - f(\lambda)\right| \left|X\right).$$

Then consider the following estimator:

$$f_n^*(\lambda) = \frac{1}{2\pi} \sum_{|k| \le n-1} K\left(\frac{|k|}{h_n}\right) \hat{\gamma}_k^* e^{ik\lambda}, \qquad \lambda \in [-\pi, \pi],$$

where:

$$\hat{\gamma}_k^* = \frac{1}{n} \sum_{j=1}^{n-|k|} \hat{\epsilon}_j \hat{\epsilon}_{j+|k|}, \qquad 0 \le |k| \le (n-1).$$

Theorem (C.-Dede (2017) [1], submitted)

Let h_n be a sequence of positive integers such that $h_n \to \infty$ as n tends to infinity, and: $h_n \mathbb{E}\left(|\epsilon_0|^2 \left(1 \wedge \frac{h_n}{n} |\epsilon_0|^2 \right) \right) \xrightarrow[n \to \infty]{} 0$. Then, under the assumptions of Hannan's Theorem:

$$\sup_{\lambda \in [-\pi,\pi]} \|f_n^*(\lambda) - f(\lambda)\|_{\mathbb{L}^1} \xrightarrow[n \to \infty]{} 0.$$

Remark

If
$$\epsilon_0 \in \mathbb{L}^2$$
, then there exists $h_n \to \infty$ such that $h_n \mathbb{E}\left(\left|\epsilon_0\right|^2 \left(1 \wedge \frac{h_n}{n} \left|\epsilon_0\right|^2\right)\right) \xrightarrow[n \to \infty]{} 0$ holds.

This theorem is true for a fixed design X. But a quick look to the proof of this theorem suffices to see that:

$$\lim_{n \to \infty} \sup_{\lambda \in [-\pi,\pi]} \mathbb{E}\left(\left| f_n^*(\lambda) - f(\lambda) \right| \left| X \right) = 0, \quad a.s. \right.$$

Corollary (Hannan's theorem + Consistence theorem)

Corollary

Under the assumptions of Hannan's Theorem and the previous theorem (Consistence of C_n), we get:

$$C_n^{-\frac{1}{2}}\left(D(n)(\hat{\beta}-\beta)\right)\xrightarrow[n\to\infty]{\mathcal{L}}\mathcal{N}(0,I_p),$$

where I_p is the $p \times p$ identity matrix.

Consequently, we can obtain confidence regions and tests for β in this dependent context.

Sommaire

Framework

2 Hannan's theorem

3 Estimation of the covariance matrix

Tests and Simulations Bibliography

"Fisher" test: Dependent case

 $H_0: \beta_{j_1} = \ldots = \beta_{j_{p_0}} = 0$, against $H_1: \exists j_z \in \{j_1, \ldots, j_{p_0}\}$ such that $\beta_{j_z} \neq 0$. If the error process is strictly stationary, we have:

$$C_{n_{p_0}}^{-1/2} \begin{pmatrix} d_{j_1}(n)(\hat{\beta}_{j_1} - \beta_{j_1}) \\ \vdots \\ d_{j_{p_0}}(n)(\hat{\beta}_{j_{p_0}} - \beta_{j_{p_0}}) \end{pmatrix} \xrightarrow{\mathcal{L}} \mathcal{N}(0_{p_0 \times 1}, I_{p_0}),$$

Then under H_0 -hypothesis:

$$\begin{pmatrix} Z_{1,n} \\ \vdots \\ Z_{p_0,n} \end{pmatrix} = C_{n_{p_0}}^{-1/2} \begin{pmatrix} d_{j_1}(n)\hat{\beta}_{j_1} \\ \vdots \\ d_{j_{p_0}}(n)\hat{\beta}_{j_{p_0}} \end{pmatrix} \xrightarrow{\mathcal{L}} \mathcal{N}(0_{p_0 \times 1}, I_{p_0}),$$

and we define the following test statistic:

$$\Xi = Z_{1,n}^2 + \dots + Z_{p_0,n}^2.$$

Under the H_0 -hypothesis, $\Xi \xrightarrow[n \to \infty]{\mathcal{L}} \chi^2_{p_0}$.

One-parameter test

If we have $H_0: \beta_j = 0$ against $H_1: \beta_j \neq 0$, for j in $\{1, \ldots, p\}$ ("Student" test), under the H0-hypothesis:

$$d_j(n)\hat{\beta}_j \xrightarrow[n \to \infty]{} \mathcal{N}(0, c_{j,j})$$

Then the test statistic is:

$$T_{j,n} = \frac{d_j(n)\hat{\beta}_j}{\sqrt{c_{n,(j,j)}}}$$

Under the H_0 -hypothesis, $T_{j,n} \xrightarrow[n \to \infty]{} \mathcal{N}(0,1)$

Choice of h_n

$$C_n = D(n)(X^t X)^{-1} X^t \widehat{\Gamma}_{n,h_n}^* X(X^t X)^{-1} D(n),$$

with:

$$\widehat{\Gamma}_{n,h_n}^* = \left[K\left(\frac{j-l}{h_n}\right) \widehat{\gamma}_{j-l}^* \right]_{1 \leq j,l \leq n}$$

For the kernel K, we shall use:

$$\begin{cases} K(x) &= 1 & if \ |x| \le 0.8\\ K(x) &= 5-5|x| & if \ 0.8 \le |x| \le 1\\ K(x) &= 0 & if \ |x| > 1. \end{cases}$$

This kernel verifies the conditions to apply the consistence theorem. It is close to the rectangular kernel (whose Fourier transform is not integrable). Hence, the parameter h_n can be understood as the number of covariance terms that are necessary to obtain a good approximation of Γ_n . To choose its values, we shall use the graph of the empirical autocovariance of the residuals.

Example

We first simulate (Z_1, \ldots, Z_n) according to the AR(1) equation $Z_{k+1} = \frac{1}{2}(Z_k + \eta_{k+1})$, where:

- Z_1 is uniformly distributed over [0,1]
- $(\eta_i)_{i\geq 2}$ is a sequence of i.i.d. random variables with distribution $\mathcal{B}(1/2)$, independent of Z_1 .

Let us define:

$$\epsilon_i = F_{\mathcal{N}(0,\sigma^2)}^{-1}(Z_i).$$

By construction, ϵ_i is $\mathcal{N}(0, \sigma^2)$ -distributed (but the sequence $(\epsilon_i)_{i \geq 1}$ is not a Gaussian process). For the simulations, σ^2 is chosen equal to 25.

First model simulated:

$$Y_i = \beta_0 + \beta_1(i^2 + X_i) + \epsilon_i, \quad \forall i \in \{1, \dots, n\}$$

with $(X_i)_{i\geq 1}$ a gaussian AR(1) process (the variance is equal to 9), independent of the process $(\epsilon_i)_{i>1}$.

We test H_0 : $\beta_1 = 0$, against H_1 : $\beta_1 \neq 0$, for different choices of n and h_n .

- $\beta_0 = 3.$
- Under H_0 , the same Fischer test is carried out 2000 times. Then we look at the frequency of rejection of the test (under H_0), that is to say the estimated level of the test (we want an estimated level close to 5%).

• Case $\beta_1 = 0$ and $h_n = 1$ (no correction):

n	200	400	600	800	1000
Estimated level	0.203	0.195	0.183	0.205	0.202

Here, since $h_n = 1$, we do not estimate any of the covariance terms. The result is that the estimated levels are too large. The test will reject the null hypothesis too often.

The parameter h_n may be chosen by analyzing the graph of the empirical autocovariances. For this example, the shape of the empirical autocovariance suggests to keep only 4 terms. This leads to choose $h_n = 5$.

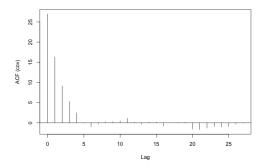


Figure : Empirical autocovariances of the residuals.

• Case
$$\beta_1 = 0$$
, $h_n = 5$:

n	200	400	600	800	1000
Estimated level	0.0845	0.065	0.0595	0.054	0.053

As suggested by the graph of the empirical autocovariances, the choice $h_n = 5$ gives a better estimated level than $h_n = 1$. If n = 2000 and $h_n = 7$, the estimated level is around 0.05.

• Case $\beta_1 = 0.00001$, $h_n = 5$:

In this example, H_0 is not satisfied. We perform the same tests as above (N = 2000) to estimate the power of the test.

n	200	400	600	800	1000
Estimated power	0.1025	0.301	0.887	1	1

As one can see, the estimated power is always greater than 0.05, as expected. Still as expected, the estimated power increases with the size of the samples. As soon as n=800, the test always rejects the H_0 -hypothesis.

Second model

$$Y_i = \beta_0 + \beta_1 (\log(i) + \sin(i) + X_i) + \beta_2 i + \epsilon_i, \quad \forall i \in \{1, ..., n\}$$

We test H_0 : $\beta_1 = \beta_2 = 0$ against H_1 : $\beta_1 \neq 0$ or $\beta_2 \neq 0$. The coefficient β_0 is equal to 3, and we use the same simulation scheme as above.

• Case
$$\beta_1 = \beta_2 = 0$$
 and $h_n = 1$ (no correction):

n	200	400	600	800	1000
Estimated level	0.348	0.334	0.324	0.3295	0.3285

As for the first simulation, if $h_n = 1$ the test will reject the null hypothesis too often.

As suggested by the graph of the estimated autocovariances, it suggests to keep only 5 terms of covariances. This leads to choose $h_n = 6.25$.

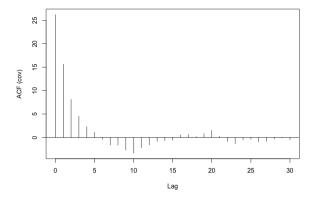


Figure : Empirical autocovariances of the residuals.

• Case
$$\beta_1 = \beta_2 = 0$$
, $h_n = 6.25$:

n	200	400	600	800	1000
Estimated level	0.09	0.078	0.066	0.0625	0.0595

Here, we see that the choice $h_n = 6.25$ works well. For n = 1000, the estimated level is around 0.06. If n = 2000 and $h_n = 6.25$, the estimated level is around 0.05.

• Case
$$\beta_1 = 0.2$$
, $\beta_2 = 0$, $h_n = 6.25$:

Now, we study the estimated power of the test.

n	200	400	600	800	1000
Estimated power	0.33	0.5	0.6515	0.776	0.884

As expected, the estimated power increases with the size of the samples, and it is around 0.9 when n=1000.

Perspectives

- To develop a data driven criterion for the coefficient h_n
- Package R for the applications of these results
- To consider the case where p (number of variables) is greater than n (number of observations)

Thank you for your attention !

E. Caron and S. Dede.

Asymptotic distribution of least square estimators for linear models with dependent errors : regular designs. eprint arXiv:1710.05963, Oct. 2017.

J. Dedecker, F. Merlevède, and D. Volny.

On the weak invariance principle for non-adapted sequences under projective criteria.

Journal of Theoretical Probability, 20(4):971–1004, 2007.

J. Dedecker and C. Prieur.

New dependence coefficients. examples and applications to statistics.

Probability Theory and Related Fields, 132(2):203–236, 2005.

E. J. Hannan.

Central limit theorems for time series regression. Probability theory and related fields, 26(2):157–170, 1973.

Nonlinear system theory: Another look at dependence.

Proceedings of the National Academy of Sciences of the United States of America, 102(40):14150–14154, 2005.