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Linear Regression Model

Linear Regression model:
Y = Xβ + ε,

• X is a fixed design, [n× p]
• Y is a n random vector

• β is a p vector of unknown parameters

• ε are the errors, ε ∈ Rn.

Usual assumptions:

• the errors are i.i.d.

• E(ε) = 0 and V ar(ε) = σ2In

• Sometimes, ε ∼ N (0, σ2In)
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Least Square Estimator

β̂ = argminβ∈Rp ‖Y −Xβ‖22 = (XtX)−1XtY.

Ŷ = Xβ̂: Orthogonal Projection of Y on MX = V ect{X.,1, ..., X.,p}

• E(β̂) = β and Cov(β̂) = σ2(XtX)−1

• Residual vector: ε̂ = Y − Ŷ = Y −Xβ̂ ∈M⊥X
• σ̂2 =

‖ε̂‖22
n−p .

Distribution of the LSE:

- Gaussian Case: β̂ ∼ N (β, σ2(XtX)−1)

- Non-Gaussian Case: D(n)(β̂ − β)
L−−−−→

n→∞
N (0, σ2Q−1).
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Goals and Plan

Main Goal : Remove the independence hypothesis and find results
similar to the i.i.d. case.
Plan :

1 Hannan’s Theorem (1973) [4]: convergence of the LSE in the
stationary case under very mild conditions

2 Show that for a large class of designs, the asymptotic covariance
matrix is as simple as the i.i.d. case

3 Estimation of the covariance matrix

4 Applications with Fisher’s tests.
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Stationarity

Let (Ω,F ,P) be a probability space. (εi)i∈Z is an error process defined
on (Ω,F ,P), supposed strictly stationary, with zero mean, and ε0 ∈ L2.

Definition : Strict Stationarity

A stochastic process (εi)i∈Z is said to be strictly stationary if the joint
distributions of (εt1 , . . . , εtk) and (εt1+h, . . . , εtk+h) are the same for all
positive integers k and for all t1, . . . , tk, h ∈ Z.
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Spectral density

Autocovariance function:

γ(k) = Cov(εm, εm+k) = E(εmεm+k).

Let f be the associated spectral density, λ ∈ [−π, π]:

γ(k) =

∫ π

−π
eikλf(λ)dλ,

f(λ) =
1

2π

∞∑
k=−∞

γ(k)eikλ.
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Hannan’s condition on the error process

Stationary case: Hannan (1973) → Central Limit Theorem for the usual

LSE β̂, under very mild conditions.

∀j ∈ Z and ∀Z ∈ L2(Ω): Pj(Z) = E(Z|Fj)− E(Z|Fj−1).

Hannan’s condition on the error process:∑
i∈Z
‖P0(εi)‖L2 < +∞.

This implies:
∑
k |γ(k)| < +∞.

Examples which verify Hannan’s condition:

- Linear Processes, functions of linear processes (Dedecker, Merlevède,
Vólny (2007) [2])

- Conditions à la Gordin ([2])
- Framework of Wu (Wu (2005) [5])
- Weakly dependent sequences (Dedecker-Prieur (2004) [3],

Caron-Dede (2017) [1])
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Hannan’s conditions on the design

Let X.,j be the column j of the matrix X, j ∈ {1, . . . , p}:

dj(n) = ‖X.,j‖2 =

√√√√ n∑
i=1

x2i,j ,

and let D(n) be the diagonal matrix with diagonal term dj(n).

Conditions on the design:

∀j ∈ {1, . . . , p}, lim
n→∞

dj(n) =∞,

∀j ∈ {1, . . . , p}, lim
n→∞

sup1≤i≤n |xi,j |
dj(n)

= 0,

and the following limits exist:

∀j, l ∈ {1, . . . , p}, ρj,l(k) = lim
n→∞

n−k∑
m=1

xm,jxm+k,l

dj(n)dl(n)
.
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We define the p× p matrix R(k):

R(k) = [ρj,l(k)] =

∫ π

−π
eikλFX(dλ),

where FX is the spectral measure associated with the matrix R(k).

Moreover, we suppose:
R(0) > 0.
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Theorem (Hannan (1973) [4])

Under the previous conditions:

D(n)(β̂ − β)
L−−−−→

n→∞
N (0, F−1GF−1),

and we have the convergence of second order moment:

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

)
−−−−→
n→∞

F−1GF−1,

with F and G the matrices:

F =
1

2π

∫ π

−π
FX(dλ),

G =
1

2π

∫ π

−π
FX(dλ)⊗ f(λ).
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Regular design

Definition (Regular design)

A fixed design X is called regular if, for any j, l in {1, . . . , p}, the
coefficients ρj,l(k) do not depend on k.

Interest:

• the asymptotic covariance matrix is easy to compute and similar to
the i.i.d. case

• Not restrictive class (for instance Regularly varying sequence).
Applications with Time Series.
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Corollary

Under the assumptions of Hannan’s Theorem, if moreover the design X
is regular, then:

D(n)(β̂ − β)
L−−−−→

n→∞
N

(
0,

( ∞∑
k=−∞

γ(k)

)
R(0)−1

)
,

and we have the convergence of the second order moment:

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

)
−−−−→
n→∞

( ∞∑
k=−∞

γ(k)

)
R(0)−1.

For the i.i.d. case: D(n)(β̂ − β)
L−−−−→

n→∞
N
(
0, σ2Q−1

)
.

Thus, to obtain confidence regions and tests for β, we need an estimator
of
∑∞
k=−∞ γ(k).
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Spectral density estimate

Since f(0) = 2π
∑∞
k=−∞ γ(k), we need an estimator of the spectral

density.
Let us first consider a preliminary random function:

fn(λ) =
1

2π

∑
|k|≤n−1

K

(
|k|
cn

)
γ̂ke

ikλ, λ ∈ [−π, π],

with:

γ̂k =
1

n

n−|k|∑
j=1

εjεj+|k|, 0 ≤ |k| ≤ (n− 1).

K is the kernel: K(x) = 1 if |x| ≤ 1
K(x) = 2− |x| if 1 ≤ |x| ≤ 2
K(x) = 0 if |x| > 2.

cn −−−−→
n→∞

∞ and cn
n −−−−→n→∞

0.
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In our context, (εi)i∈{1,...,n} is not observed. Only the residuals are
available:

ε̂i = Yi − (xi)
tβ̂ = Yi −

p∑
j=1

xi,j β̂j ,

because only the data Y and the design X are observed. Consequently,
we consider the following estimator:

f∗n(λ) =
1

2π

∑
|k|≤n−1

K

(
|k|
cn

)
γ̂∗ke

ikλ, λ ∈ [−π, π],

where:

γ̂∗k =
1

n

n−|k|∑
j=1

ε̂j ε̂j+|k|, 0 ≤ |k| ≤ (n− 1).
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Consistence

Theorem (Caron-Dede (2017), submitted)

Let cn be a sequence of positive integers such that cn →∞ as n tends
to infinity, and:

cnE
(
|ε0|2

(
1 ∧ cn

n
|ε0|2

))
−−−−→
n→∞

0.

Then, under the assumptions of Hannan’s Theorem:

sup
λ∈[−π,π]

‖f∗n(λ)− f(λ)‖L1 −−−−→
n→∞

0.

Remark

If ε0 ∈ L2, then there exists cn →∞ such that

cnE
(
|ε0|2

(
1 ∧ cn

n |ε0|
2
))
−−−−→
n→∞

0 holds.
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Corollary

Corollary

Under the assumptions of Hannan’s Theorem, if the design X is regular
and if f(0) > 0, then:

R(0)
1
2√

2πf∗n(0)
D(n)(β̂ − β)

L−−−−→
n→∞

N (0, Ip),

where Ip is the p× p identity matrix.

Consequently, we can obtain confidence regions and tests for β in this
dependent context.
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Fisher Test

If the errors are i.i.d. Gaussian, the test statistic is:

F =
1

p− p0
× RSS0 −RSS

σ̂2
ε

.

• p0 is the dimension of the model under the H0-hypothesis

• RSS = ‖ε̂‖22 (for the complete model)

• RSS0 is the corresponding quantity under H0

• σ̂2
ε = RSS

n−p

Under H0:

F
L∼ Fp−p0n−p .
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If the error process (εi)i∈Z is stationary, the usual Fischer tests can be
corrected by replacing the estimator of σ2 = E(ε20) by an estimator of:∑
k γ(k):

F̃c =
1

p− p0
× RSS0 −RSS

2πf∗n(0)
,

where f∗n(λ) = 1
2π

∑
|k|≤n−1K

(
|k|
cn

)
γ̂∗ke

ikλ. Thanks to the previous

results:

F̃c
L−−−−→

n→∞

χ2(p− p0)

p− p0
.
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Example: An autoregressive process

In practice, only a finite number of γ(k) is estimated. For the
simulations, to choose this number (called an) we shall use the graph of
the empirical autocovariance of the residuals.

Hence:

Fc =
1

p− p0
× RSS0 −RSS
γ̂∗0 + 2

∑an
k=1 γ̂

∗
k

.
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Example: An autoregressive process

The process (ε1, . . . , εn) is simulated, according to the AR(1) equation:

εk+1 =
1

2
(εk + ηk+1).

• ε1 is uniformly distributed over [− 1
2 ,

1
2 ]

• (ηi)i≥2 is a sequence of i.i.d. random variables, independent of ε1,
such that P(ηi = − 1

2 ) = P(ηi = 1
2 ) = 1

2

• Hannan’s conditions are satisfied and the Fisher tests can be
corrected.
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Model

Model simulated:

Yi = β0 + β1
√
i+ β2 log(i) + 10εi, ∀i ∈ {1, ..., n}

- H0: β1 = β2 = 0 against H1: β1 6= 0 or β2 6= 0

- β0 = 3

- Under H0, the same Fisher test is carried out 2000 times. Then we
look at the estimated level of the test for different choices of n and
an. (we want an estimated level close to 5%).
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• Case β1 = β2 = 0 and an = 0 (no correction):

n 500 1000 2000 3000 4000 5000
Estimated level 0.4435 0.4415 0.427 0.3925 0.397 0.4075

If an = 0, the estimated levels are too large. The test reject the null
hypothesis too often.
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Example: An autoregressive process

As suggested by the graph of the estimated autocovariances, the choice
an = 4 should give a better result for the estimated level.

Figure : Empirical autocovariances, n = 2000.
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• Case β1 = β2 = 0, an = 4:

n 500 1000 2000 3000 4000 5000
Estimated level 0.106 0.1 0.078 0.072 0.077 0.068

- an = 4 works well. For an = 4 and n = 5000, the estimated level is
around 0.07

- If n = 10000, it is around 5%. Asymptotically, it converges to 0.05.
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Then, under H1, we study the estimated power of the test:

• Case β1 = 0, β2 = 0.2, an = 4:

n 500 1000 2000 3000 4000 5000
Estimated power 0.2505 0.317 0.4965 0.6005 0.725 0.801

The estimated power increases with the size of the samples, and it is
around 0.8 as soon as n = 5000.
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Perspectives

• To generalize these results in case where the design X is random

• To develop a data driven criterion for the coefficient an

• Package R for the applications of these results
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Thank you for your attention !
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