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Introduction
Time Series: CO2

A typical example to show the correlations between the observations:

Figure: CO2 rate as a function of time.
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From Time Series to Linear Regression Model

Yt = trend+ seasonality︸ ︷︷ ︸
deterministic

+ errors︸ ︷︷ ︸
random

.

Then:
Y = Xβ + ε,

with:

X =


1 12 13 cos( 2π

3 ) sin( 2π
3 ) . . . cos( 2π

12 ) sin( 2π
12 )

...
...

...
...

...
...

...
...

t t2 t3 cos( 2πt
3 ) sin( 2πt

3 ) . . . cos( 2πt
12 ) sin( 2πt

12 )
...

...
...

...
...

...
...

...
n n2 n3 cos( 2πn

3 ) sin( 2πn
3 ) . . . cos( 2πn

12 ) sin( 2πn
12 )


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ACF of the residuals

β̂ = (XtX)−1XtY : Least Squares Estimators, ε̂ = Y − Ŷ : residuals.

Figure: Autocorrelation of the residuals.

This is important for the applications to consider the dependency of the
error process.
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Goals

1 Investigate the linear regression model in the case where the errors
are dependent

2 Modification of the usual results (confidence intervals, tests, . . . ).
Focus on the “Fisher’s test” and its calibration

3 Study the non-parametric regression model in the case where the
errors are Gaussian and dependent, via a model selection approach.

Emmanuel Caron The regression models with dependent errors 6 / 66



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

Summary

1 Some definitions

2 Presentation of Hannan’s Theorem (1973) [11]: convergence of the
LSE in the stationary case under very mild conditions

3 Estimation of the asymptotic covariance matrix

4 Application: modification and calibration of the “Fisher’s tests”

5 Gaussian non-parametric regression.
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Some definitions
Linear model

Let us consider the regression linear model:

Y = Xβ + ε,

where:

• X is a random or deterministic design, matrix of size [n× p]
• Y is a n random vector of observations

• β is the p vector of unknown parameters

• ε are the errors and ε ∈ Rn. In the following, the error process is
independent of the design X.

Emmanuel Caron The regression models with dependent errors 9 / 66



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

Least Squares Estimators

Let us recall the definition of the Least Squares Estimators (LSE):

β̂ = argminβ∈Rp ‖Y −Xβ‖22 = (XtX)−1XtY,

(‖.‖2= euclidean norm).

We have:

• Ŷ = Xβ̂: Orthogonal Projection of Y on
MX = V ect{X.,1, . . . , X.,p}

• Residual vector: ε̂ = Y − Ŷ = Y −Xβ̂ ∈M⊥X
• σ̂2 =

‖ε̂‖22
n−p .
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Strict Stationarity

Let (Ω,F ,P) be a probability space.
The error process (εi)i∈Z is defined on (Ω,F ,P), supposed strictly
stationary with zero mean, and ε0 ∈ L2(Ω).

Definition: Strict Stationarity

A stochastic process (εi)i∈Z is said to be strictly stationary if the joint
distributions of (εt1 , . . . , εtk) and (εt1+h, . . . , εtk+h) are the same for all
positive integers k and for all t1, . . . , tk, h ∈ Z.

Let (Fi)i∈Z be a non-decreasing filtration on (Ω,F ,P) defined as follows:
Fi = σ(εk, k ≤ i).
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Spectral density

Let us define the autocovariance function of the error process:

γ(k) = Cov(εm, εm+k) = E(εmεm+k),

and we denote by Γn the toeplitz covariance matrix:
Γn = [γ(j − l)]1≤j,l≤n.

Let f be the associated spectral density, that is the positive function on
[−π, π] such that:

γ(k) =

∫ π

−π
eikλf(λ)dλ.
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Hannan’s theorem
Condition on the error process

In the following, we work conditionally at design X. Given X, Hannan
(1973) [11] has proved a Central Limit Theorem in the stationary case for

the usual LSE β̂ under very mild conditions.

Let (Pj)j∈Z be a family of projection operators: ∀j ∈ Z and
∀Z ∈ L2(Ω): Pj(Z) = E(Z|Fj)− E(Z|Fj−1).

Hannan’s condition on the error process:∑
i≥0

‖P0(εi)‖L2 < +∞.

This implies the short memory:
∑
k |γ(k)| < +∞.

Hannan’s condition is satisfied for most of short-range dependent
processes. (Linear Processes, Functions of linear processes (Dedecker,
Merlevède, Volný (2007) [7]), Weakly dependent sequences (Dedecker
and Prieur (2005) [8], Caron and Dede (2018) [4]), . . . ).
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Hannan’s conditions on the design

Let X.,j be the column j of the matrix X, j ∈ {1, . . . , p}, and dj(n) the

euclidean norm of X.,j : dj(n) = ‖X.,j‖2 =
√∑n

i=1 x
2
i,j .

Let D(n) be the diagonal normalization matrix with diagonal term dj(n).

Conditions on the design:

• ∀j ∈ {1, . . . , p}, limn→∞ dj(n) =∞ a.s.

• ∀j ∈ {1, . . . , p}, limn→∞
sup1≤i≤n|xi,j |

dj(n) = 0 a.s.,

and the following limits exist, ∀j, l ∈ {1, . . . , p}, k ∈ {0, . . . , n− 1}:

• ρj,l(k) = limn→∞
∑n−k
m=1

xm,jxm+k,l

dj(n)dl(n) a.s.
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Hannan’s theorem

Theorem (Hannan (1973) [11])

Under the previous conditions, for all bounded continuous function f :

E
(
f
(
D(n)(β̂ − β)

) ∣∣∣X) a.s.−−−−→
n→∞

E
(
f(Z)

∣∣∣X) ,
where the distribution of Z given X is: N (0, C). Furthermore we have
the convergence of second order moment:

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) a.s.−−−−→
n→∞

C.

Remark

Let us notice that, by the dominated convergence theorem, we have for
any bounded continuous function f:

E
(
f
(
D(n)(β̂ − β)

))
−−−−→
n→∞

E (f(Z)) .
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Estimation of the covariance matrix

To obtain confidence regions or test procedures, one needs to estimate
the limiting covariance matrix C. By Hannan, we have:

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) a.s.−−−−→
n→∞

C,

and:

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) = D(n)(XtX)−1XtΓnX(XtX)−1D(n),

with Γn = [γ(j − l)]1≤j,l≤n (covariance matrix of the error process).

Consequently, we only need an estimator of Γn.
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Residual-based Kernel estimator

Let us consider the following estimator of Γn:

Γ̂∗n,hn
=

[
K

(
j − l
hn

)
γ̂∗j−l

]
1≤j,l≤n

,

with2 : γ̂∗k = 1
n

∑n−|k|
j=1 ε̂j ε̂j+|k|, 0 ≤ |k| ≤ (n− 1).

The function K is a kernel such that:

• K is nonnegative, symmetric, and K(0) = 1

• K has compact support

• the fourier transform of K is integrable.

The sequence of positive reals hn is such that hn →∞ and hn

n → 0 as
n→∞.

2In our context, (εi)i∈{1,...,n} is not observed. Only the residuals ε̂i = Yi − (xi)
tβ̂

are available, because only the data Y and the design X are observed.
Emmanuel Caron The regression models with dependent errors 19 / 66
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Covariance matrix estimator

To estimate the asymptotic covariance matrix C, we use the estimator:

Cn = D(n)(XtX)−1XtΓ̂∗n,hn
X(XtX)−1D(n).

The coefficients of the matrices Cn and C are respectively denoted by
cn,(j,l) and cj,l , for all j, l in {1, ..., p}.
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Consistency

The following theorem proves, under mild conditions, the L1-norm
consistency given X of the covariance matrix estimator:

Theorem (C. (2019) [3])

Let hn be a sequence of positive reals such that hn →∞ as n→∞, and:

hnE
(
|ε0|2

(
1 ∧ hn

n
|ε0|2

))
−−−−→
n→∞

0.

Then, under the assumptions of Hannan’s Theorem, the estimator Cn is
consistent, that is for all j, l in {1, ..., p}:

E
(∣∣cn,(j,l) − cj,l∣∣ ∣∣∣X) −−−−→

n→∞
0.
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hn condition

Corollary

Under the same conditions, the estimator Cn converges in probability to
C as n tends to infinity.

The condition:

hnE
(
|ε0|2

(
1 ∧ hn

n
|ε0|2

))
−−−−→
n→∞

0. (1)

is a very general condition.

Remark

If ε0 ∈ L2, then there exists hn →∞ such that (1) holds.
In particular, if ε0 has a fourth order moment, then the condition is
verified if hn√

n
→ 0.
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Sketch of the proof

Let V (X) be the matrix E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X), and let vj,l

be its coefficients. By the triangle inequality, ∀j, l ∈ {1, . . . , p}:∣∣cn,(j,l) − cj,l∣∣ ≤ |vj,l − cj,l|+ ∣∣cn,(j,l) − vj,l∣∣ .
Thanks to Hannan’s Theorem:

lim
n→∞

E
(
|vj,l − cj,l|

∣∣∣X) = 0, a.s.

Then it remains to prove that:

lim
n→∞

E
(∣∣cn,(j,l) − vj,l∣∣ ∣∣∣X) = 0, a.s.

We have:

V (X) = D(n)(XtX)−1XtΓnX(XtX)−1D(n)

Cn = D(n)(XtX)−1XtΓ̂∗n,hn
X(XtX)−1D(n).
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Thanks to the convergence of Dn(XtX)−1Dn (Hannan’s conditions), it
is sufficient to consider the matrices:

V ′ = D−1
n XtΓnXD

−1
n , C ′n = D−1

n XtΓ̂∗n,hn
XD−1

n .

We know that Γn =
∑n−1
k=−n+1 γ(k)J

(k)
n , where J

(k)
n is a matrix with

some 1 on the k-th diagonal. Thus we have:

D(n)−1XtΓnXD(n)−1 =

n−1∑
k=−n+1

γ(k)Bk,n

D(n)−1XtΓ̂∗n,hn
XD(n)−1 =

n−1∑
k=−n+1

K

(
k

hn

)
γ̂∗kBk,n,

with Bk,n = D(n)−1XtJ
(k)
n XD(n)−1.
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∣∣∣c′n,(j,l) − v′j,l∣∣∣ =

∣∣∣∣∣
n−1∑

k=−n+1

(
K

(
k

hn

)
γ̂∗k − γ(k)

)
bk,nj,l

∣∣∣∣∣ ,
where bk,nj,l is the coefficient (j, l) of the Bk,n matrix.

We recall that:

f(λ) =
1

2π

∞∑
k=−∞

γ(k)eikλ, γ(k) =

∫ π

−π
eikλf(λ)dλ,

and:

f∗n(λ) =
1

2π

n−1∑
k=−n+1

K

(
|k|
hn

)
γ̂∗ke

ikλ, K

(
|k|
hn

)
γ̂∗k =

∫ π

−π
eikλf∗n(λ)dλ.
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Then:

n−1∑
k=−n+1

(
K

(
k

hn

)
γ̂∗k − γ(k)

)
Bk,n =

∫ π

−π
(f∗n(λ)− f(λ)) gn(λ)(dλ),

with:

gn(λ) =
1

2π

n−1∑
k=−(n−1)

eikλBk,n,

in such a way that the matrices Bk,n are the Fourier coefficients of the
function gn(λ):

Bk,n =

∫ π

−π
eikλgn(λ)dλ.

Thus it remains to prove that, for all j, l in {1, . . . , p}:

lim
n→∞

E
(∣∣∣∣∫ π

−π
(f∗n(λ)− f(λ)) [gn(λ)]j,ldλ

∣∣∣∣ ∣∣∣X) = 0, a.s.
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We have:

E
(∣∣∣∣∫ π

−π
(f∗n(λ)− f(λ)) [gn(λ)]j,ldλ

∣∣∣∣ ∣∣∣X)
≤ sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X)∫ π

−π
|[gn(λ)]j,l| dλ,

because [gn(λ)]j,l is measurable with respect to the σ-algebra generated
by the design X.
Then, we can prove that:∫ π

−π
|[gn(λ)]j,l| dλ ≤ 1.

Consequently:

sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X)∫ π

−π
|[gn(λ)]j,l| dλ

≤ sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X) .
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Proof: Spectral density estimate

Let us consider the following estimator of the spectral density, for

λ ∈ [−π, π]: f∗n(λ) = 1
2π

∑
|k|≤n−1K

(
|k|
hn

)
γ̂∗ke

ikλ, where:

γ̂∗k = 1
n

∑n−|k|
j=1 ε̂j ε̂j+|k|, 0 ≤ |k| ≤ (n− 1).

Theorem (C. and Dede (2018) [4])

Under the same assumptions of the consistency Theorem:

sup
λ∈[−π,π]

‖f∗n(λ)− f(λ)‖L1 −−−−→
n→∞

0.

This theorem has been proved for a fixed design X, but it remains true
with a random design:

lim
n→∞

sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X) = 0, a.s.

The proof is complete.
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Corollary (Hannan’s theorem + Consistency theorem)

Corollary

Under the assumptions of Hannan’s Theorem and the consistency
theorem (Consistency of Cn), we get:

C
− 1

2
n

(
D(n)(β̂ − β)

)
L−−−−→

n→∞
N (0, Ip),

where Ip is the p× p identity matrix.

Consequently, we can obtain confidence regions and tests for β in this
dependent context.
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Tests

• We are interested in test procedures on the linear model, particularly
the “Fisher’s” tests

• Thanks to the previous corollary, we can establish a new test
statistic, so that the tests on the linear model always have an
asymptotically good level, even when the underlying error process is
dependent

• The level of a test (denoted by α) is the probabilty to choose H1

hypothesis while H0 is true.
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“Fisher’s” test: Dependent case

H0 : βj1 = . . . = βjp0 = 0, against H1 : ∃jz ∈ {j1, . . . , jp0} such that
βjz 6= 0. If the error process is strictly stationary, we have:

C−1/2
np0

 dj1(n)(β̂j1 − βj1)
...

djp0 (n)(β̂jp0 − βjp0 )

 L−−−−→
n→∞

N (0p0×1, Ip0).

Then under H0-hypothesis:Z1,n

...
Zp0,n

 = C−1/2
np0

 dj1(n)β̂j1
...

djp0 (n)β̂jp0

 L−−−−→
n→∞

N (0p0×1, Ip0),

and we define the following test statistic: Ξ = Z2
1,n + · · ·+ Z2

p0,n. Under

the H0-hypothesis, Ξ
L−−−−→

n→∞
χ2
p0 .

In the same way, we can define an univariate test.
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Bandwidth calibration

We have defined test procedures with a level asymptotically equal to α
(α to be determined, typically 5%).

Question: With a finite value of observations, how to choose the
bandwidth hn in order to have well-calibrated tests and a non-asymptotic
level as close as possible to the wanted level α ?

Two main difficulties in our context:

1 Our target is the level of a test, which differs from classical
approaches where the risk of an estimator is considered

2 We are not only in a context of dependent variables, but also in the
very general framework of Hannan whose theorem applies for most
stationary short-memory processes.

Consequently we can not use directly the classical methods of adaptive
statistics in our framework.
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Figure: Level curve: estimated level as a function of the lag; n = 1000
observations, T = 100 simulations.

Emmanuel Caron The regression models with dependent errors 34 / 66



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

Empirical methods

• It is of first importance to provide hypothesis tests with correct
significance levels

• We need data driven methods for the applications

• We partially answered to this problem by constructing empirical
methods based on the data

• We propose a ”plug-in” approach which consists in replacing the
estimator of Γn. So we introduce the following estimator:

Ĉ = Ĉ(Γ̂n) := D(n)(XtX)−1XtΓ̂nX(XtX)−1D(n),

and we use Ĉ to compute the usual statistics of the linear model.
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We have defined different ways to obtain the Γ̂n matrix:

1 by adapting an autoregressive process on the residual process and
computing the theoretical covariances of the obtained AR(p)
process. The order of the AR process is chosen by an AIC criterion

2 using the kernel estimator defined in Caron [3] with a bootstrap
method to choose the value of the window (Wu and Pourahmadi
(2009) [15])

3 by using an alternative choice of the window for the rectangular
kernel (Efromovich (1998) [9])

4 in using an adaptive estimator of the spectral density via a
histogram base (Comte (2001) [6]), with the slope heuristic
algorithm to choose the dimension.

All these methods have been programmed on R in the slm package
available on the CRAN.
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Simulations

Let us define the three following processes:
1 AR(1) process (called ”AR1”): εi − 0.7εi−1 = Wi, where
Wi ∼ N (0, 1)

2 MA(12) process (called ”MA12”):
εi = Wi + 0.5Wi−2 + 0.3Wi−3 + 0.2Wi−12,, where the (Wi)’s are
i.i.d. random variables following Student’s distribution with 10
degrees of freedom

3 A dynamical system (called ”Sysdyn”): for γ ∈]0, 1[, the
intermittent map θγ : [0, 1] 7→ [0, 1] introduced by Liverani, Saussol
and Vaienti [12] is defined by

θγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1].

The Sysdyn process is then defined by εi = θiγ (For the simulations,
γ = 1/4). It is a non-mixing process (in the sense of Rosenblatt),
with an arithmetic decay of the correlations (∼ 1

k3 if γ = 1/4).
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• Let us define the following linear regression model, for all i in
{1, . . . , n} (β1 = 3 and Zi is a gaussian AR(1) process):

Yi = β1 + β2(log(i) + sin(i) + Zi) + β3i+ εi

• We simulate a n-error process according to the AR1, the MA12 or
the Sysdyn processes (small samples (n = 200) and larger
(n = 1000, 5000))

• We simulate realizations of the linear regression model under the
null hypothesis: H0 : β2 = β3 = 0

• We make the test like described above

• The simulations are repeated 1000 times.
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n
Process

Method
Fisher
i.i.d.

fitAR spectral
proj

efromo
vich

kernel

200

AR1 process 0.465 0.097 0.14 0.135 0.149

Sysdyn process 0.385 0.105 0.118 0.124 0.162

MA12 process 0.228 0.113 0.113 0.116 0.15

1000

AR1 process 0.418 0.043 0.049 0.049 0.086

Sysdyn process 0.393 0.073 0.077 0.079 0.074

MA12 process 0.209 0.064 0.066 0.069 0.063

5000

AR1 process 0.439 0.044 0.047 0.047 0.047

Sysdyn process 0.381 0.058 0.061 0.057 0.064

MA12 process 0.242 0.044 0.048 0.043 0.057

Table: Estimated levels.
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Gaussian model selection theorem in a dependent context

• Estimation of a non-random vector f∗ ∈ Rn in the model:

Y = f∗ + ε, where ε ∼ N (0n×1,Σn×n)

• Study the regression model in the non-parametric case via a model
selection approach

• Develop a model selection theory with penalization in the framework
of Gaussian dependent variables

• Establish an oracle inequality for the minimal risk estimator among a
collection of models

• For short range and long range dependent Gaussian processes
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Framework

• Estimation of a non-random vector f∗ ∈ Rn from the observation
Y , in the model

Y = f∗ + ε, where ε ∼ N (0n×1,Σn×n)

• Σ is the n× n covariance matrix with eigenvalues
λ1 ≥ . . . ≥ λn ≥ 0. The spectral radius of Σ

ρ(Σ) = max
1≤i≤n

λi = λ1

• Let {Sm,m ∈M} be a collection of finite-dimensional spaces, with
dm = dim(Sm)

• f̂m = Proj⊥Sm
Y is the least squares estimator of f∗ on Sm. It

minimizes the contrast function

γn(t) = ‖Y − t‖2n , ∀t ∈ Sm

(‖.‖n : normalized euclidean norm in Rn)
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• `2-risk of an estimator f̂m

R(f̂m) = E
[∥∥∥f̂m − f∗∥∥∥2

n

]
• Using Pythagoras equality, we have the bias-variance decomposition

E
[∥∥f∗ − ProjSm

(Y )
∥∥2

n

]
=
∥∥(Id−ProjSm

)f∗
∥∥2

n
+E

[∥∥ProjSm
(ε)
∥∥2

n

]
We can prove that the variance term is equal to

E
[∥∥ProjSm

(ε)
∥∥2

n

]
=

1

n
tr(ProjSm

Σ)

Usually, bias and variance have opposite behaviors according to the
dimension.

• We want to find the dimension that balances bias and variance, and
select the oracle estimator f̂m0

such that

m0 ∈ argminm∈M{R(f̂m)}
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• The true risk is unknown in practice, then we introduce the
empirical risk

R̂(f̂m) =
∥∥∥Y − f̂m∥∥∥2

n

• This typically leads to overfitting, then we have to penalize the
larger models.

• Aim : select a model in the collection such that the risk of the
selected estimator is as close as possible to the oracle model

m̂ ∈ argminm∈M

{∥∥∥Y − f̂m∥∥∥2

n
+ pen(m)

}
,

where pen :M→ R+ is a penalty function

• We perform a non asymptotic analysis of the risk of the selected
estimator f̂m̂ in the dependent Gaussian context
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A general Gaussian model selection result

Let π = {πm,m ∈M} be a distribution of probability on M associated
with the collection of models {Sm,m ∈M}, such that

∑
m∈M πm = 1

Theorem (C., Dedecker and Michel (2020))

Let K > 1, and let pen :M→ R+ be a penalty function such that, for
any m ∈M,

pen(m) ≥ K

n

(√
tr
(
ProjSm

Σ
)

+ ρ(Σ) +
√
ρ(Σ)

√
2 log

(
1

πm

))2

.

Then there exists a constant C > 1 which only depends on K such that
the estimator f̂m̂ selected satisfies

E
[∥∥∥f∗ − f̂m̂∥∥∥2

n

]
≤ C

(
inf
m∈M

{
E
[∥∥∥f∗ − f̂m∥∥∥2

n

]
+ pen(m)

}
+
ρ(Σ)

n

)
.
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Proof - Some key points

Theorem (Inequality from Cirel’son, Ibragimov and Sudakov [5].)

Let F : (Rn, ‖ · ‖)→ R be a 1-Lipschitz function and η a random vector
in Rn such that η ∼ Nn(0, σ2Id) for some σ > 0. Then there exists a
random variable ξ following an exponential distribution of parameter 1
such that

F (η) ≤ E [F (η)] + σ
√

2ξ.

Lemma

Let Σ be a n× n symmetric semidefinite matrix and S a linear subspace
of Rn. Let ε be a Gaussian random vector such that ε ∼ Nn(0,Σ). Then
there exists a random variable ξ following an exponential distribution of
parameter 1 such that

‖ProjS(ε)‖n ≤ E ‖ProjS(ε)‖n +
√

ρ(Σ)
n

√
2ξ.
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Proof of Lemma.

Let ε ∼ Nn(0,Σ), then ε satisfies ε =
√

Ση with η ∼ Nn(0, Id). Let S
be a linear subspace of Rn. We then check that the function

η →
∥∥∥ProjS(

√
Ση)

∥∥∥
n

is a Lipschitz function∥∥∥ProjS(
√

Σx)− ProjS(
√

Σy)
∥∥∥
n
≤

∥∥∥√Σ(x− y)
∥∥∥
n

≤ ρ(
√

Σ) ‖x− y‖n

≤
√
ρ(Σ) ‖x− y‖n =

√
ρ(Σ)

n
‖x− y‖ .

By applying the theorem to the function η →
∥∥∥ProjS(

√
Ση)

∥∥∥
n

, we find

that ∥∥∥ProjS(
√

Ση)
∥∥∥
n
≤ E

∥∥∥ProjS(
√

Ση)
∥∥∥
n

+

√
ρ(Σ)

n

√
2ξ.
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pen(m) ≥ K

n

(√
tr
(
ProjSm

Σ
)

+ ρ(Σ) +
√
ρ(Σ)

√
2 log

(
1

πm

))2

• The main term in the penalty shape is the trace term tr
(
ProjSm

Σ
)

• It plays the same role as the term Var(ε1)dm in the results of Birgé
and Massart for independent Gaussian errors [1, 13]

• This penalty can only be calculated if the matrix Σ is completely
known. However, in certain cases, we can consider effective
strategies to circumvent this issue
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Short range dependent case

• We have an easier penalty shape from the upper bound

tr
(
ProjSm

Σ
)
≤ dmρ(Σ)

• With a minor modification of the proof of the previous theorem, the
risk bound

E
[∥∥∥f∗ − f̂m̂∥∥∥2

n

]
≤ C

(
inf
m∈M

{
E
[∥∥∥f∗ − f̂m∥∥∥2

n

]
+ pen(m)

}
+
ρ(Σ)

n

)
is still valid when

pen(m) ≥ Kρ(Σ)

n

(√
dm +

√
2 log

(
1

πm

))2

, for any K > 1
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• If the sequence (εi)i≥1 is a stationary and short memory Gaussian
process, then the spectral radius is bounded and the penalty shape is
completely in line with the case of i.i.d. Gaussian errors [1, 13]

• The usual variance term Var(ε1) has been replaced by the spectral
radius ρ(Σ).

• If the collection of model is not too rich, then

pen(m) ∼ K ′ρ(Σ)dm

In practice, the penalty can be chosen proportional to the model
dimension m and calibrated according to the slope heuristic method
introduced by Birgé et Massart [2]
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Slope heuristic

• To calibrate the penalty function, we use the slope heuristics method
proposed by Birgé and Massart [2].

• The aim is to tune the constant κ in a penalty of the form
pen(m) = κpenshape(m) (in the most standard cases, penshape is the
dimension of the model). Let m̂(κ) be the model selected by the
penalized criterion with constant κ

m̂(κ) ∈ argminm∈M

{
1

n

∥∥∥Y − f̂m∥∥∥2

n
+ κpenshape(m)

}
The Dimension Jump algorithm consists of the following steps

1 Compute κ 7→ m̂(κ),
2 Find the constant κ̂dj > 0 that corresponds to the highest jump of

the function κ→ dm̂(κ),
3 Select the model m̂(2κ̂dj),

m̂ ∈ argminm∈M

{∥∥∥Y − f̂m∥∥∥2

n
+ 2κ̂dj penshape(m)

}
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Dimension Jump

Values of the penalty constant κ
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Long range dependent case

• It is tempting to keep this penalty shape as a general penalty shape
for Gaussian linear model selection with dependent errors. However,
this is too rough in some cases (for instance for long range
dependent processes)

• When the error process is a long range dependent Gaussian process,
the spectral radius of the covariance matrix is not bounded

⇒ the previous selection model procedure is not working !

• An other penalty shape must be defined

Emmanuel Caron The regression models with dependent errors 53 / 66



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

General shape
Short range dependent case
Long range dependent case
Applications

Figure: Comparison of risk shapes for the fractional Gaussian process with
Hurst coefficient between 0.5 and 0.9, and for n = 2000.
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• We shall only consider here the linear spaces Sm of Rn generated by
the family of piecewise polynomials of degree at most r (r ∈ N) on
the regular partition of size m of the interval [0, 1].

• dm = dim(Sm) = (r + 1)m

• The case r = 0 corresponds to the regular regressogram of size m.

• The error process (εi)i≥1 is assumed stationary. Instead of assume
that ρ(Σ) is bounded, we assume that

|γε(k)| ≤ κk−γ , for some κ > 0 and γ ∈ (0, 1),

where γε(k) = Cov(ε0, εk)
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pen(m) ≥ K

n

(√
tr
(
ProjSm

Σ
)

+ ρ(Σ) +
√
ρ(Σ)

√
2 log

(
1

πm

))2

Lemma

Let Sm be the linear space of Rn induced by the family of piecewise
polynomials of degree at most r on the regular partition of size m of the
interval [0, 1]. Then

tr
(
ProjSm

Σ
)
≤ Cmγn1−γ ,

where C depends on κ, γ and r.
Moreover, using the classical Gerschgorin theorem [10], we can proved
that

ρ(Σn) ≤ Bn1−γ ,

where B depends on κ and γ.
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• Using the results of this lemma, one can choose a penalty of the
form

pen(m) = K
mγ

nγ
,

for some positive constant K depending on κ, γ and r

• For the applications, we would like to use the slope heuristic
method. But it is necessary to estimate the parameter γ

• We propose an estimation of γ based on the Hurst coefficient, which
is estimated thanks to the Whittle estimator

• Then we use the slope heuristic method with penshape(m) = mγ̂
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Simulation with short memory ARMA

• Let ε be the following ARMA(2,1) gaussian process
(Wi ∼ N (0, 0.5)): εi − 0.4εi−1 − 0.2εi−2 = Wi + 0.3Wi−1

• For all t in [0, 1], f∗ = 3− 0.1t+ 0.5t2 − t3 + sin(8t)

• We generate a sample of size n = 1000, defined for all i in
{1, . . . , n}:

Yi = f∗
(
i

n

)
+ εi

• The goal is to adapt a regressogram and choose the best regular
partition to approach the f∗ function.

For a dimension m, from 1 to 50, we split the interval [0, 1] into m

intervals and the estimator f̂m is a piecewise constant function, equal to
the average of Yi on each interval.

Emmanuel Caron The regression models with dependent errors 58 / 66



Introduction
Some definitions

Hannan’s theorem
Estimation of the covariance matrix

Tests
Gaussian non-parametric regression

General shape
Short range dependent case
Long range dependent case
Applications

This simulation is repeated 100 times and we obtain the following mean

risk curve

(∥∥∥f̂m − f∗∥∥∥2

2

)

Figure: Mean risk curve for 100 simulations, and total mean risk of the method
with slope heuristic (red line).
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• Evaluation of the performance of the dimension jump algorithm

• We compute the risk
∥∥∥f̂m − Y ∥∥∥2

2
• Then we use the slope heuristic method to choose the dimension

(again the simulation is repeated 100 times).

Figure: Boxplot with the dimensions selected by the dimension jump algorithm.
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This represents the function f∗ and its estimator with a regressogram of
dimension 10 (dimension with the minimum average theoretical risk).

Figure: Function f∗ (black) and the regressogram with dimension 10 (red).
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Applications to Nile data - long memory

The Nile data consist of readings of
annual minimum levels at the Roda
gorge near Cairo, commencing in the
year 622; often only the first 663
observations are employed because
missing observations occur after the
year 1284 [14]. These data show
cyclical variations, which come from
a phenomenon of long memory.

Figure: Nile River data.
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We apply our methods on these data to estimate the trend, since we
have a way to select automatically a partition from the data

(a) The usual penalty proportional to m,
using the ”classical jump dimension” to
calibrate the constant

(b) A penalty proportional to mγ̂ , where
γ̂ is estimated from the Hurst estimator.

Figure: Nile River data and resulting estimators.
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ACF of the residuals

(a) Penalty proportional to m (b) Penalty proportional to mγ̂

Figure: ACF of the residuals for the two methods
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Perspectives

• Model selection

- Non-parametric regression: generalize the previous results to the
non-Gaussian case

- Dependent Lasso

• Statistical Learning

- Dependent variables in Statistical Learning
- Double descent

• Spatial Statistics
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Thank you !
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L. Birgé and P. Massart.
Gaussian model selection.
Journal of the European Mathematical Society, 3(3):203–268, 2001.
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